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Integrable Limits of Dynamics in
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The dynamics of quasiparticles in Bose condensates at zero temperature, con-
fined in harmonic potentials, are studied using the Bogoliubov-theory. The
Hamiltonian of the Bogoliubov-theory, appearing in the semiclassical limit is
investigated in detail. The classical motion given by this Hamiltonian is
generally chaotic already for axially symmetric traps. But, in certain parameter
regions the motion becomes quasi-integrable. Integrable regions are studied
classically, and the experimentally accessible low-energy region quantum
mechanically.

KEY WORDS: Bose—FEinstein condensation in traps; semiclassical-limit;
integrable-problems.

1. INTRODUCTION AND SUMMARY

Since the first realizations of Bose—FEinstein condensates in 1995,2 % with
Rb, Li, Na there are already more then twenty experimental groups who
are able to cool down atoms in magnetic traps below the critical tem-
perature of Bose—Einstein condensation. Several effects have been studied
experimentally using condensates (see for experimental reviews® >)), which
initiated an immense number of theoretical works (for theoretical reviews
see refs. 6 and 7). The common features of the nowadays experiments are,
that atoms are confined in harmonic trap potential and the atom-cloud is
very dilute. These facts call for a space-dependent version of Bogoliubov-
theory at zero temperature, which is applicable due to the diluteness. One
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must go beyond Bogoliubov-theory for larger temperature, where the ratio
of the noncondensed atoms to the total number of atoms is non-negligible,
or if one is interested in dampings of elementary excitations.

The many body Hamiltonian, which describes the interacting atoms
trapped in the external potential U(r) is given in second quantized form by

22

I-AI—,u]\Afzjd?’r P (r) <—2hmA + U(r)—,u> P(r)
+jd3rfd3r/ P+ () FH() o(r — ') P(r') (r) (1)

where the field operator follows Bose-statistics: [ &(r), ¥*+(r')] =d(r—r').
In the recent experiments the trap potential is chosen to be a harmonic
oscillator one

Ur) = s mwi x>+ 3 mw} y* + 3 mo?z? (2)

In most of the experiments the trap potential is axially symmetric
(w,=w,) but, the case of the triaxially anisotropic harmonic trap (o, #
w,#w,) has also been realized.®’ Other characteristics of the new
experiments are that the achieved temperatures are rather small and the
density of the trapped atoms are extremely small. Consequently, at the
occuring temperatures and densities the two-body interaction can be
treated in the s-wave approximation:

dnh’a,

m

v(r—r')=

or—r')=go(r—r'), (3)

where a, is the s-wave scattering length, which is here assumed to be
positive (Up to now, there is only one experiment of successfull Bose—
Finstein condensation® using “Li, where a, was negative).

Our aim is here to investigate the quasi particle dynamics for Bose
condensates of atomic gases in traps given by the Bogoliubov-theory. It has
been found in refs. 9 and 10 that the classical dynamics of quasiparticles is
generally nonintegrable already for axially symmetric harmonic traps
(w,=w,=w,). Chaos shows up most dominantly at intermediate energies

~ u, where u is the chemical potential, and has a direct consequence for
quantum dynamics, because it implies avoided level crossings between
quasiparticle levels changing some external parameter (for example the
ratio wy/w.). We shall find however, some quasi-integrable parameter
regions. It will be shown that the motion is asymptotically integrable for
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high energies, where the approximate classsical Hamiltonian is the
Hartree-Fock Hamiltonian. At low energies there is one region, where the
motion is given approximatelly by the Hartree—-Fock Hamiltonian as well,
which is also quasi-integrable. Finally, we shall show that the low-lying
collective modes, first discussed theoretically by Stringari,'" becomes
integrable classically and the corresponding Schrodinger equation is
separable in elliptic coordinates. As a new result we shall calculate the full
spectra of collective modes for highly deformed traps in two limiting cases:
W > w, and w, >> w,.

The paper is organized as follows. Section 2 is devoted to the deriva-
tion of space-dependent Bogoliubov-theory for quasiparticles and to its
semiclassical limit. In Section 3 we shall investigate the classical behavior of
the corresponding Hamiltonian for different parameters. In Section 4 we
shall discuss the quasi-integrable regimes classically and derive conserved
quantities ensuring integrability in these regimes. In Section 5 we shall
solve the quantum mechanical problem of low lying excitations. As a new
result we derive the full quasiparticle spectra for highly deformed harmonic
traps. Section 6 is devoted for final remarks.

2. DERIVATION OF THE SEMICLASSICAL LIMIT OF THE
BOGOLIUBOV-EQUATIONS

The zero-temperature, mean-field theory starts by splitting the field
operator into a C-number part @,(r) (the condensate wave function) and
a residual operator d(r): P(r) = @,(r) + d(r) and the decomposition of (1)
in terms of different order in &, & *. In the Bogoliubov-approximation the
terms of order 3 and 4 are neglected. The term of order one is made to
vanish by choosing @,(r) to satisfy the Gross—Pitaevskii equation'?

h2
(g 4 VD =+ ¢ 1217 ) 1) =0 )
It must be solved with the normalization
No=[dr |g(r)|? (5)

where according to the assumptions of the Bogoliubov-theory all atoms are
supposed to be in the condensate: Ny~ N.
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For Nyay/d>=>1, where d=./h/mo is the characteristic oscillator
length and @ = (w,w,w.)"” the solution to the Gross—Pitaevskii equation
can be well approximated by the Thomas-Fermi approximation'* which
neglects the kinetic-energy term in (4):

@) = (1= UD) O~ L) (6)
According to the experimental data Nya,/d>>1 is fullfilled in most of the
experiments sufficiently below T..

The next step of the zero-temperature mean-field procedure is the
diagonalization of that part of (1) which is of order 2 by a space dependent
Bogoliubov-transformation &(r) = > Luy(r) &;—v(r) & ] to quasiparticles.
The quasiparticle operators &; fullfill the standard Bose-commutator rela-
tions [&;,d" ] =0, The order 2 part of H—puN is diagonalized if the
space-dependent coefficients satisfy the coupled Bogoliubov-equations¥

I:IHF _gqbg(r)> <“j(r)>:E_< ”j(r) > 7
<—g¢6k2(f) H oy v,(r) I\ —v;(r) ™

with the Hartree—Fock Halnilton-operator

A h?
Hyp= —%ZH-U(r)—/l+2g|<15o(r)|2 (8)

In order to study the (possibly) chaotic behavior one must apply the
semiclassical limit of Eq. (7), in which process one can obtain the corre-
sponding classical Hamilton—Jacobi equation of the problem. The easiest
way to arrive at Hamilton—Jacobi equation is to apply the semiclassical
ansatz

()=o) o
to Eq. (7). In zeroth order in % (7) reduces to
_ _ 2\ /,0
(St s )=
with E=E;, p=0S/or and
8HF(P>T)=L2+ U(r) — p+2g | @4(r)|? (11)

2m
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The zeroth-order equations are homogeneous first order linear equations
for the coefficients u}) and v}) and correspondingly, have nontrivial solution
only, if the determinant condition E*=¢Z.(p, ) — g2|®y(r)|* is satisfied,
which gives the time-independent Hamilton—Jacobi equation E = H(dS/or,
r) with the classical Hamiltonian

H(p, 1) = /e — g2 |D(r)|* (12)

In the following we analyze the classical Hamiltonian (12) of the
Bogoliubov quasiparticles.

3. CLASSICAL BEHAVIOR OF BOGOLIUBOV
QUASIPARTICLES

For the case of isotropic harmonic traps the angular momentum vec-
tor is conserved, thus the quasiparticle dynamics is integrable. This classi-
cal integrability is reflected on quantummechanical level by the fact that
the Bogoliubov-equations are separable in spherical coordinates. Therefore,
in this section we concentrate on axially symmetric harmonic traps (@, =
w,# w,) with the condensate taken in Thomas-Fermi approximation. In
this case conserved quantities are the z-component of the angular momen-
tum (L,) and the energy (FE) itself. For an integrable 3 degree of freedom
problem one needs a third conserved quantity. The question naturally
arises: does a third conserved quantity exist for axially symmetric traps or
not?

A detailed numerical study of the classical motion governed by (12)
can be found in ref. 9 at the anisotropy a)x/a)oz\/g(a)xza)y:wo), in
which work the authors have visualized the longtime dynamics by
appropriately chosen Poincaré cuts. Here we summarize the most striking
features of the phase-space structures at fixed L, and E.

The Thomas—Fermi surface g = U(r) is an axially symmetric ellipsoid.
Important, classical characteristic energies of the problem are the chemical
potencial 4 and the centrifugal energy wyL,. Let us introduce cylindrical
coordinates p =./x*+ 32 z, ¢. ¢ is a cyclic variable because of axial sym-
metry around the z axes. The Hamiltonian (12) has merely two degrees of
freedom p and z, L, enters only as a parameter.

If the energy and L, is such that E> (wyL,)*/4u>u two different
kinds of trajectories can occur typically. If the the centrifugal energy wqL,
is strong enough the particle cannot enter the condensate and is moving in
a purely harmonic potential of the trap. This motion is completely
integrable and as a third conserved quantity one can chose E,= p2/2m +
mw?z%/2. These trajectories show up in the Poincaré cut as integrable tori.
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If the particle enters the condensate FE, is no longer conserved.
Nevertheless, for energies E >> u trajectories are very similar to that of the
motion in a harmonic trap (trivial Hartree—Fock limit). The influence of
the condensate can be taken as a small perturbation in the external poten-
tial and the system behaves quasiintegrably. Trajectories are confined to
thin stochastic layers separated from each other by integrable tori.

For energies comparable to the chemical potential one typically obser-
ves mixed phase space. The detailed phase space structure depends on the
parameters chosen. Already a small anisotropy in the trap frequencies can
lead to large chaotic parts in Poincaré cuts in this energy region. This
indicates that for E= u chaos is typical. This fact has been used in ref. 15,
where in calculating the damping of elementary exciations the authors
applied methods of random matrix theory based on the chaoticity of this
very important classical region (the main contribution to the damping
comes from those elementary excitation, where E =~ u).

If the energy is smaller than the chemical potential all trajectories
move inside and outside the condensate. Decreasing the energy the chaotic
part of phase space decreases and is restricted to a thin layer separating
and surrounding two regular islands. Most orbits seem to lie in integrable
tori for very small energy. This implies that the system has an integrable
regime in the limit of small energies. Actually, there are two different kinds
of integrable E<<u regime. One can be reached by the limit E/u,
woL,/u— 0, keeping the ratio wyL,/E fixed. This limit, in a bulk case
(U(r)=0) corresponds to the phonon regime, where the excitations show
linear wave-number dependence. In the trapped case collective excitations
in this regime has been studied first by Stringari.'"’ The other low-energy
integrable regime can be reached by the limit E/u— 0 and lies where
E— (wyL,)?*/4u << E. Here the quasiparticles are single-particle-like excita-
tions confined to a narrow layer around the Thomas—Fermi surface and
described by the classical Hartree-Fock Hamiltonian. We call this regime
by the nontrivial Hartree—-Fock regime. In the follwing we shall investigate
the above integrable regimes separately in more details.

4. INTEGRABLE LIMITING CASES CLASSICALLY

4.1. First Low-Lying Regime

Numerically it has been found® that tending with the energy to zero
keeping u, E/w, L, fixed the range of the classical motion outside the con-
densate for starting trajectories inside is getting smaller and smaller and in
the limit the motion is confined to the region inside the Thomas—Fermi
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surface. Starting trajectories from the same point inside the condensate
under the same direction and changing only the modulus of the Cartesian
momentum there exist a well defined limiting orbit. Consequently, there
should exist a well defined limiting Hamilton function. Inside the conden-
sate the Bogoliubov Hamiltonian (12) can be written as

Hp, r)=\/” <”+2u—2U(r)> (13)

2m \ 2m

For small energies u— U(r) is much bigger than the kinetic energy
everywhere except in a small region around the Thomas—Fermi surface,
thus the approximant of the Bogoliubov Hamiltonian can be obtained by
neglecting the kinetic energy square under the square root

P'P(

Hp,r)= |==(u—Ul),  Ur<pu (14)

The Hamiltonian (14) has several interesting properties. It is a homoge-
neous first-order function of the momenta. From this fact follows that star-
ting orbits from the same r(0) point with the same direction of momenta,
but with different modulus r(z) is the same. Furthermore a constraint
follows from the canonical equations: mv-v=u— U(r), relating the
velocities and the coordinates i.e., they cannot be chosen independently.
Third, for orbits approaching the boundary of the condensate the momen-
tum diverges, the velocity vanishes at the Thomas—Fermi surface.

One can get some insight into the semiclassical trajectories in this
regime if one realizes that sound wave motion with a spatially varying
speed of sound is analogous to light propagation within an optical fiber.
Here, the index of refraction is inversely proportional to the density of the
condensate. Thus, the particles tend to be guided along the outer edge of
the trap where the “index of refraction” is the largest.

The most important property of the Hamiltonian (14) is that the
corresponding Hamilton—Jacobi equation is separable for any 3D harmonic
oscillator trap potential.®> For example, if the trap potential is isotropic
one can use spherical coordinates. To prove separability in the experimen-
tally most relevant axially symmetric trap potential case the separating
variables are cylindrical elliptic coordinates &, , ¢ defined as

p=0,/(E+D(1—n*), z=0,n 0,>0, (15)
and

p=0,/(C=1(1—n?), z=0:{n o.<w, (16)
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depending on the ratio w,/w,, where

o =\/a*—b% o,=/b*—d* a=./2umo}, b=./2u/mwn? (17)

The geometrical meaning of a and b are simply the semi axes of the
Thomas—Fermi ellipsoid.

Following the separation procedure of ref. 9 one can find a new
separation constant in addition to E and L, which gives a third classical
conserved quantity B(p, r) which reads as

B=B(p,r)=d*(pi+p})+b>pi—(xp.+ yp,+2p.)’ (18)

This nontvivial phase-space quantity ensures the integrability of this low-
energy regime. We note that the separation procedure of the Hamilton—
Jacobi equation for completely anisotropic harmonic potential can be
found in refs. 9 and 16.

4.2. Nontrivial Hartree-Fock Regime

We have seen that the large energy (trivial) Hartree—Fock regime is
quasi-integrable. In general, the motion given by the Hartree—Fock
Hamiltonian H gz

Hyge(p1) = 2+ | — U(r) (19)

is nonintegrable.®

However, in traps there is even a regime for energies much smaller
than x4 where on one hand the Hartree—-Fock Hamiltonian (19) is a good
approximation of the Bogoliubov—Hamiltonian and on the other hand the
motion is integrable. Namely, in case when the kinetic energy is large com-
pared to the local mean interaction energy |« — U(r)| but the total energy
E is still such that E<<pu. This can be satisfied in a layer around the
Thomas—Fermi surface. In that case roughly speaking, the particle spends
the same time inside and outside the condensate but the oscillations in the
direction orthogonal to the Thomas—Fermi surface are much faster then the
motion along the Thomas—Fermi surface. Consequently, there exists an
adiabatic constant /.= (27) "' § p. d¢ (integration over one full cycle in &)
which emerges in this low-energy limit of the Hartree—Fock dynamics and
which causes the integrability.
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This adiabatic constant (for the case w,/w, < 1) in elliptic coordinates
is given by®

I 4u 1 E 1—#? <a)0p”>2_ 1 <w0LZ>2r/2
3w, 11—yl 1-201—9")\ 2u 1—n?\ 2u

(20)

where ¢=./1—wj/w?. 1t is interesting to note that in this regime
quasiparticles act as atoms in a “Mexican hat” potential, where the energy
minimum is at the edge of the condensate.

5. COLLECTIVE LOW-LYING EXCITATIONS

The wave-equation for the low-lying exciations of the condensate had
been obtained by Stringari.'" For Bose-Einstein condensates at zero
temperature, which are sufficiently large to validate the Thomas—Fermi
approximation (6) he had found that one must solve the eigenvalue
problem

Po?P(r)=G6¥r), G= —ng —Ur)O(u—Ur)V (21)

for the excitation frequencies w and for the mode functions ¥(r) (for the
connections of ¥(r) and the Bogoliubov amplitudes u,(r), v;(r) see ref. 17).
In the semiclassical limit 4w — E and —ihV — p the hydrodynamical equa-
tion (21) goes to the expression of the classical Hamiltonian (14). Thus,
Eq. (21) is the quantized version of (14) with some prescribed ordering
between the non-commuting operators —i#V and U(r). The wave equation
must be solved with the normalization

dy=| drrwrm wm) (22)

Vrr

(Integration is over the inside of the Thomas—Fermi surface). The eigen-
value problem (21) with the normalization (22) has discrete eigenmodes .
This fact originates from the confining harmonical oscillator potential U(r).

In the previous section we have analyzed the classical Hamiltonian
problem and have seen that classical Hamilton—Jacobi equation was
separable for harmonic traps. In the following we shall concentrate on the
wave-equation (21) for different harmonic oscillator trap potential. The
classical problem gives hints what coordinates might be good candidates in
solving the wave-equation.
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For isotropic traps (w,=w,=w,=w,) the angular momentum
operators L, and L? = L2 +L2 + L2 are commuting with G, consequently /
and m are good quantum numbers and trying the separation with ¥(r) =
", (r*) Y. (0, ») we are left only with the radial problem. The normaliza-
tion dictates that ¥,(r*) must be a finite polinomial of order n. Solving the
eigenvalue problem Stringari showed'? that the excitation spectrum is

@*(n, [, m) = (2n*+2nl+3n+1) (23)

He also had found some of the modes for axially symmetric Harmonic
traps. In subsequent works!®1® the complete solution for the axially sym-
metric case was given. The method for solving the roost general w, #w, #

w,, triaxially anisotrqpic case can be found in ref. 16. Here we follow?) in
treating the w, =w, = w, case.

Because L, is commutlng with G, m is a good quantum number. Let
us investigate ﬁrst when wy<w,. Using cylindrical elliptical coordinates
defined in (15) and the separation ansatz ¥(&, , @) = ¥(&) ¥, (1) e™? one
obtains two equations from (21): one for ¥,

i(l 2)1 m2 2651 —n*)n d 20w}
a1 T I — 20— dp 1—(1—n?)

_ _ﬁan
(24)

the other for V.. f is a separation constant. It turns out that both equa-
tions are identical if in the equation for ¥, we substitute i for #, ie.,
V(&)= ¥,(i¢). The solution for one coordinate is the analytical continua-
tion of the solution of the other from the real to the imaginary axis. Equa-
tion (24) depends only on m? not on m, therefore the energy levels are the
same for +m. Expanding ¥, for fixed m in terms of associated Legendre
function P)"!(n) with arbitrary coefficients a,, (where |m|</) one obtains
a second order recursion relation for the coefficients g, relating only odd or
even indices /. The scalar product (22) and the connection between ¥.(&)
and ¥, (i) require that this second order recursion must terminate at some
integer vax = |m| +n. This leads to the quantization of the the separation
constant f:

B=(n+|ml)(n+|m|+3) (25)
and to the fact that ¥, (and correspondingly ¥,) must be (1 —z*)"?
times a polinomial of order n. The eigenvalue condition for the excitation
frequencies in the bases chosen takes the form of a tridiagonal matrix, which
can be symmetrized, and therefore has real eigenvalues. The dimension
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of this matrix is N=1+[n/2], and for fixed n, |m| we have N different
solutions for ®? which we label by the third quantum number j=0....,
N—1.If N=1 or N=2 one can diagonalize the matrix by hand. Energy
levels for these cases can be found in ref. 10.

One can construct such an operator B, which acting on the wave-func-
tion has the eigenvalue f. This operator in cartesian coordinates has the
form

B=vev 43 —ar( o+ ) 26
=(FV)(rV+3)—a <6x% +8x§> ox3 (26)
and is a quantized version of the classically conserved quantity B (see
Eq. (18)). The operatror B commutes with G and L, in the axially sym-
metric case and ensures the complete separability of Eq. (21). This operator
is hermitian with respect to the scalar product used.

For a general anisotropy ¢ analytical results can be obtained only for
N=1 and N=2. But, for two special values of ¢ full analytic results are
possible. One of them is ¢ =0, which is the spherical symmetric case and
the case ¢ =1, which was partially investigated by Stringari in ref. 19. As
a new result here, we reconsider the ¢ =1 case using the above approach
to the problem. ¢— 1 is an interesting, but rather singular limit (no
experimental realization till now). Keeping w, at finite value and tending
with w, to zero is a possible realization of this limit. In that case the
Thomas—Fermi condensate deforms to a more and more extended pancake-
like object and at ¢ =1 it extends to infinity. However, the excitation spec-
trum tends to a well defined limiting spectrum. Using as a small parameter
0 =1—¢? in perturbation theory one can obtain analytic results for highly
deformed trap. Let us intruduce the following notations:

= 4(0) (27)

2
z

Multiplying both sides of Eq. (24) by 1 —&*(1 —#?) and inserting f§ from
(25) the equation to be solved has the form A(d) ¥,=(H,+JH,) ¥,.
Writing

2M0)=(n—=2))(n=2j+1), ¥, (1) =(1—n*)"2 =2 P(n*) (28)

(with j undetermined till now) one gets a hipergeometric equation for
P(x), x=n> Due to the scalar product (22) the only possible solution is

W, (1,0=0)=(1=n*)"™2y"=¥F(—j,n+|m| — j+3/2sn—2j+3/2, %),
J=0, 1., [n/2] (29)
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Thus, at =0 j is our third quantum-number introduced above. It is
important to note that the spectrum (28) at 6 =0 do not depend on |m|.
After a rather tedious, but straighforward calculation one obtains for the
spectrum:

. L [(=2)n—2j+1) wﬁ<|m|+2j(n+|m|—j+3/2)>+0<a>8ﬂ

w0 2 T2 2%—n—3p2 w?

z

(30)

using first order perturbation theory. If w, >> w, the spectrum has a large
scale w, plus a fine structure on a much smaller scale. If n=2p, j=p (p=
0, 1,...) the large scale part vanishes. In that case the spectrum reduces to

w*xw(|lm| +5p |ml+5p*+2p) (31)

Those soft modes have two integer quantum numbers and appearing on
a two-dimensional manifold of the (n, j, m) quantum-number space. The
soft modes (31) have been first calculated by Stringari'® but, not the full
spectra (30).

Now, let us turn to the opposite case w, > w,. One must use the coor-
dinates (16). The treatment is very similar to the previous calculation. Here
we only summarize the differences. The separation ansatz is the same as
before, but (24) is replaced by

d ,od m* 28(l—p*)pd 207 wf
jﬂ(l—ﬂ) -

o 1= (=) a1y T P
where & =1—w?/wj. The connection of ¥, and ¥, is ¥.(&) =W, (&).
Quantum numbers n, m, j have the same meanings and the possible values
for the separation constant f are also given by (25). Matrixes are tri-
diagonal too, but have different matrix elements. Analytically solvable
cases are N=1, N=2, and £€=0, 1. The §~1 has been experimentally
realized® (in the experiment w,/w,= 17/230 has been chosen) and the
first m =0 excitation mode has been measured with very high precision in
accordance with Stringari’s result. Using perturbation theory direct calcula-
tion gives for the unnormalized solutions:

¥, (n, 5=0)=Const(1 —y*) =12 P31 () (33)
where 6 = 1 — &> =w?/w? and P’ (x) is the associated Legendre-function of
the first kind. Results for excitations given by first order perturbation
theory for small & are
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N @2\ n(n+2|m| +3) w?
a)2(n, m,]—O)—wg{lml +<w§>2(|m|—l—2)+o<w8ﬂ (34)

w(n, m, j#0) = w3 {[ Im| (2j+ 1)+ j(2j+2)]+ <Zz>

0

[(H—ZJ')(HJr2 Im| +2j+3)  j(j+|m|)
2(|m| +2j+2) 2
<(n—2j)(n+2 |m| +2j+3)
(lm| +2j+1)(|m|+2j+2)

(n=2j+1)(n+2|m|+2j+2) w?
T 2+ D(iml +2)) >]+0<w>} (33)

j=0,1,.., [n/2]. This complete result is in accordance with Stringari,
who has calculated only the dispersion relation of the m=0, j=0 soft
modes for w, << w,:

n(n+3)
4

@*(n,m=0, j=0)~xw? (36)

using a different approach to the problem.

6. FINAL REMARKS

We have seen that in the framework of the Bogoliubov theory chaos
can show up if the condensate is taken by the Thomas—Fermi approxima-
tion. This condensate wave-function is nonanalytic at the edge of the con-
densate and may affect the existence of chaos. Taken a smooth condensate
given by the solution of the Gross—Pitaevskii equation chaos still shows up,
which is supported by the numerical work of ref. 21. In the spectra avoided
level crossings can be found, which are clear signs of quantum chaos. Thus
the existence of chaos is not connected to the Thomas—Fermi approxima-
tion (which is rather good at large condensates).

The integrability of the non-trivial Hartree-Fock regime is however
connected to the Thomas-Fermi approximation. This regime is hardly
accessible analytically for smooth condensates. It might be possible that
with smooth condensate wave-function this regime is not integrable at all.
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